
Crossover, Population Dynamics, and
Convergence in the GAuGE System

Miguel Nicolau and Conor Ryan

Biocomputing and Developmental Systems Group
Computer Science and Information Systems Department

University of Limerick, Ireland
{Miguel.Nicolau, Conor.Ryan}@ul.ie

Abstract. This paper presents a study of the effectiveness of a recently
presented crossover operator for the GAuGE system. This crossover, un-
like the traditional crossover employed previously, preserves the associa-
tion of positions and values which exists in GAuGE genotype strings, and
as such is more adequate for problems where the meaning of an allele
is dependent on its placement in the phenotype string. Results obtained
show that the new operator improves the performance of the GAuGE
system on simple binary problems, both when position-sensitive data is
manipulated and not.

1 Introduction

The GAuGE (Genetic Algorithms using Grammatical Evolution) [13,9] system
is a recent approach to position-independence in the field of genetic algorithms.
Each individual in a GAuGE genotype string is composed of a sequence of posi-
tion and value specifications which, through a genotype-to-phenotype mapping
process similar to that of the GE (Grammatical Evolution) [12] system, ensures
that each position in the resulting phenotype string is always specified, but only
once. This mapping process produces a very compact and efficient representa-
tion, with neither under- nor over-specification of phenotypic information.

Until recently, a simple genetic algorithm [6] was used to select, combine
and mutate genotype strings, which are then mapped using the GAuGE sy-
stem to produce phenotypic information, to be evaluated. This approach, simple
and elegant as it may be, presents some drawbacks. By allowing genetic ope-
rators which do not respect the representation of GAuGE genotype strings to
manipulate those strings, associations between positions and values, which were
previously discovered, may be lost in future generations.

To prevent this scenario from happening, a set of new crossover operators
has been introduced [10], which, when applied, do not disrupt the associations
between positions and values. Three different problem domains were tackled on
that study, and some of the new operators showed a significant improvement of
performance, when compared to the original GAuGE approach.

Of those operators, the pure crossover showed the most significant improve-
ment in performance, and therefore a more detailed analysis of that operator is

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 1414–1425, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Crossover, Population Dynamics, and Convergence in the GAuGE System 1415

done in the current paper. By restricting the problem domain to that of binary
pattern matching, and by turning off the mutation operator on all systems, the
advantages of the new crossover become clearer and easier to analyse. The re-
sults obtained show that, by respecting the underlying GAuGE representation
of the genotype strings, the new crossover operator significantly improves the
performance of the GAuGE system, even on irregular binary pattern problems,
where using the traditional crossover resulted in a heavy loss of performance.

This paper is structured as follows. The next section presents the GAuGE
system, its mapping process, and the crossover operators tested. Section 3 pre-
sents the experiments conducted and their results, while Section 4 analyses those
results. Finally, Section 5 draws some conclusions on this work, and highlights
future work directions.

2 GAuGE

The main principle behind the GAuGE system is the separate encoding of the po-
sition and value of each phenotypic variable. Its mapping process interprets each
(fixed-length) genotype binary strings as a sequence of (position,value) pairs,
which are used to build a fixed-length phenotype string. This mapping process
ensures that each position of the phenotype string is specified exactly once, in
much the same way that the GE system, an automatic programming system
using grammars, ensures that each codon from the genotype strings chooses an
existing production from a specified grammar.

Another feature that GAuGE shares with GE is functional dependency bet-
ween genes, which is a direct result from the mapping process used. In GE, when
a production has been chosen by a codon, the set of available choices available to
the next codons changes; in other words, previous choices of grammar produc-
tions affect the available choices for the current codon. A similar effect occurs in
GAuGE; in its mapping process, the set of free positions left in the phenotype
string for the current gene to choose from depends on the choices of previous
genes. In short, there is a functional dependency across the genotype strings in
both GE and GAuGE, as the function of previous genes dictates the function of
the following ones.

Finally, as GE uses the mod operator to map gene values to a choice of
productions from a grammar rule, this creates a many-to-one mapping from
the genotype strings onto the phenotype programs, leading to the occurrence
of neutral mutations [7], which in turn introduce variety at the genotypic level.
This also occurs in GAuGE, as each position specified at the genotypic level is
mapped onto a set of available positions in the phenotype string. It has also been
shown that the explicit introduction of degeneracy can reduce structural bias at
the genotypic level [9].

2.1 Previous Work

Previous work has used similar approaches and techniques as the ones employed
in GAuGE. Some of Bagley’s [1] computer simulations used an extended string

1416 M. Nicolau and C. Ryan

representation to encode both the position and the value of each allele, and used
an inversion operator to affect the ordering of genes. Holland [6] later presented
modifications to the schema theorem, to include the approximate effect of the
inversion operator. To tackle the problems associated with the combination of
the inversion and crossover operators, these were later combined into a single
operation, and a series of reordering operators were created [11].

The so-called messy genetic algorithms applied the principle of separating
the gene and locus specifications with considerable success [4], and have since
been followed by many competent GAs.

Work by Bean [2] with the Random Keys Genetic Algorithm (RKGA) hinted
that a tight linkage between genes would result in both a smoother transition
between parents and offspring when genetic operators are applied, and an error-
free mapping to a sequence of ordinal numbers. More recently, Harik [5] has
applied the principles of functional dependency in the Linkage Learning Genetic
Algorithm (LLGA), in which a chromosome is expressed as a circular list of genes,
with the functionality of a gene being dependent on a chosen interpretation point,
and the genes between that point and itself.

2.2 GAuGE Mapping

A full description and analysis of the GAuGE mapping process can be found
elsewhere [9]. As an example of this process, consider a simple problem com-
posed of four phenotypic variables (� = 4), ranging between the values 0 and 7
(range = 8). The evolutionary algorithm maintains a genotype population G, of
N individuals.

The length of each individual depends on a chosen position field size (pfs)
and a value field size (vfs). As this problem is composed of four variables,
pfs = 2 has been chosen, as that is the minimum number of bits required to
encode four positions; for the value fields, a value of vfs = 4 has been chosen,
to introduce degeneracy in the coding of values (the minimum number of bits
required for the range specified is three). The required length of each string Gi,
of the genotypic space G, is therefore L = (pfs + vfs) × � = (2 + 4) × 4 = 24.

For example, take the following individual as an example genotype string:

Gi = 000101111101111001010010

The mapping process will proceed to create a phenotype string Pi. It consists
in four steps1:

Φ : G
Φ1−→ X

Φ2−→ D
Φ3−→ R

Φ4−→ P

The first mapping process (Φ1) consists in creating an integer string, using
the chosen pfs and vfs values:

Xi =
(
(Xj

i , X̃j
i)

)
0≤j≤�−1 =

(
(0, 5), (3, 13), (3, 9), (1, 2)

)

1 In the actual implementation of GAuGE, some of these steps can be reduced.

Crossover, Population Dynamics, and Convergence in the GAuGE System 1417

The second mapping process (Φ2) consists in interpreting this string as a
sequence of four (position,value) pairs, to create a string of desired positions Di

and a string of desired values D̃i.
These are created by mapping each position field onto the number of positions

left in the phenotype string. For the first position field, X0
i = 0, the desired

position specified is calculated by (X0
i mod �) = (0 mod 4) = 0, as at this stage

no positions have been specified yet. The value field is calculated using the range
of phenotypic values, giving (X̃0

i mod range) = (0 mod 8) = 5.
The second set of specifications is calculated in a similar way. For the po-

sition field, the desired position specified is calculated by (X1
i mod (� − 1)) =

(3 mod 3) = 0, as only three positions remain unspecified in the phenotype string.
The value field is calculated as before, giving (X̃1

i mod range) = (13 mod 8) = 6.
After processing all four pairs, the string of desired specifications are:

Di = (0, 0, 1, 0) D̃i = (5, 6, 1, 2)

At this stage, it can be seen that there are some conflicts in the position
specifications (position 0 is specified three times, and positions 2 and 3 are still
unspecified). The third mapping process (Φ3) consists in removing these conflicts,
creating a string of real positions Ri and a string of real values R̃i.

These are created as follows. The first position specified, 0, is kept, as there
are no conflicts at this stage, so R0

i = 0 (i.e. the first position on the phenotype
string). The desired value specified, 5, is mapped to the range of the first phe-
notypic variable; as all variables share the same range in this problem, the real
value specification is the same as before, (5 mod 8) = 5. An X sign is used to
signal positions already taken in the phenotype string:

Ri = (0, ?, ?, ?) R̃i = (5, ?, ?, ?) Pi = (X, ?, ?, ?)

We then take the second desired position, 0, and perform a similar mapping.
As the value specified is 0, it is interpreted as being the first available position of
the phenotype string; as the position 0 has already been taken, the first available
position is 1. The value specification is calculated as before, giving:

Ri = (0, 1, ?, ?) R̃i = (5, 6, ?, ?) Pi = (X, X, ?, ?)

The third set of specifications is calculated in the same fashion. Its position
specification is calculated by (1 mod 2) = 1, that is, the second available position
in the phenotype string, while the value specification remains unchanged, giving:

Ri = (0, 1, 3, ?) R̃i = (5, 6, 1, ?) Pi = (X, X, ?, X)

Finally, the fourth pair is handled in the same fashion, giving the final real
specification strings:

Ri = (0, 1, 3, 2) R̃i = (5, 6, 1, 2) Pi = (X, X, X, X)

The fourth and final mapping step (Φ4) simply consists in interpreting these
specifications, creating a phenotype string by using the formula:

P
Rj

i
i = R̃j

i (1)

1418 M. Nicolau and C. Ryan

0 a b c d1 2 5 4

0 a 1 b 3 c 7 d1

2

2

4 1 5

0 5 2 1s t u vR

0X

0 a b c d e f g hR1 2 5 4 1 6 3

0 a 1 b 3 c 7 d 7 e 0 f g3 5 hX1

2

2

4 1 5

7

0 2 2 4

0 5 2 1 3 7 4 6s t u v w x y z

X’

R’

X’

R’

0 2 2 4 zyxw

1 7 3 6w x y z

7 0 3 5e f g h

7 3 6 4

s t u v w x y z

e f g h

0 s t u v

Fig. 1. Standard crossover operator for the GAuGE system. Two individuals, X1 and
X2 exchange information after the fourth pair, generating the offspring X ′

1 and X ′
2.

In other words, through a permutation defined by Ri, the elements of R̃i are
placed in their final positions. The phenotype string, ready for evaluation, is:

Pi = (5, 6, 2, 1)

2.3 Crossover Operators

Standard Crossover. This crossover operator has been used with GAuGE in
all experiments up to now. It is a one-point crossover, operating at the genotype
level, but with crossover points limited to pair boundaries; that means that there
are �−1 possible crossover points between each individual (every pfs+vfs bits).

An example of how this operator works is shown in Figure 1. Two individuals,
randomly generated using a problem of size � = 8, are shown, already expressed
as Xi strings and their corresponding Ri strings2. By choosing to crossover these
individuals after the fourth pair, two offspring are generated, X ′

1 and X ′
2.

As can be seen, each child keeps the information from the first half of one
parent, and uses the second half of the other parent to fill in the remaining
unspecified positions. This has the side effect that the values specified in the
second half of each parent do not necessarily stay in their original positions. In
the example, the first parent specified that values (e,f,g,h) should be located at
positions (7,0,3,5), respectively, which correspond to the real positions R1=(
. . . ,7,1,6,3). However, when those specifications are interpreted within the
context of the second child, they now correspond to the real positions R′

2=(
. . . ,7,3,6,4), as the real position 1 was already specified in that child’s left
side, creating a chain of changes.

This change (or adaptation) of the second half specifications to the new
context upon which they are now interpreted is known as the ripple effect [12].
Although the way those specifications are interpreted can be quite different when
in a new context, it is not random; indeed, the ordering relationship between
those specifications is kept. In the example provided, this means that since the
2 With values a . . . h for the first individual, and s . . . z for the second individual.

Crossover, Population Dynamics, and Convergence in the GAuGE System 1419

a b c d1

0 a 1 b 3 c d1

2

2

4 1 5

0 5 2 1s t uR

0X

0 a b c d e f g hR1 2 5 4 1 6 3

0 a 1 b 3 c 7 d 7 e 0 f g3 5 hX1

2

2

4 1 5

7

0 2 2 4

0 5 2 1 3 7 4 6s t u v w x y z

X’

R’

X’

R’

s t u v w x y z 0 s t u

7 7 0 3 5x v z w

7 1 6 30 2 5 4 x v z w

f 0 h 2 e 2 y 4 g

f 3 h 7 e 4 y 6 g

7 1 6 3

1 3 7 6

Fig. 2. Pure crossover for the GAuGE system. A crossover point is chosen on the first
parent, and the corresponding value specifications from the second parent are used to
create the first offspring; the complementary operation is used to create the second
offspring. Both offspring keep the structure of their corresponding parent.

values (e,f,g,h) appeared in the order (g,h,f,e) in the phenotype string, then
this ordering will be kept in the second child’s phenotype.

Pure Crossover. This is a new crossover operator, designed to respect the (po-
sition,value) associations of GAuGE strings. It works by maintaining the struc-
ture of each parent on the offspring strings, but exchanging value specifications,
corresponding to the positions specified after the crossover point.

An example of how this operator works is shown in Figure 2. The first
offspring (X ′

1) keeps the position specifications of the first parent (X1), and
the value specifications of the first half of that parent, up to the crossover point.
After that point, the values specified by the second parent, corresponding to the
same real positions, are used instead.

The second offspring (X ′
2) is produced in a similar fashion. It keeps the

position specifications of the second parent (X2), and the value specifications
which are not required by the first offspring ; all other value specifications are
taken from the first parent, corresponding to the same positions.

In the example provided, it can be seen that the real positions (1,3,7,6), in
the 4th, 5th, 6th and 8th pairs of the second offspring, receive the corresponding
values (f,h,e,g) from the first parent, as these are the real positions specified
in the second half of that parent.

3 Experiments and Results

To test how effectively the new operator maintains the association between po-
sitions and values, a set of four binary problems was used. These problems share
the common feature that the fitness contribution of each variable is the same,
regardless of its location (i.e. no salience). In the two first problems, onemax and
zeromax, all alleles have the same value on the global optimum, regardless of

1420 M. Nicolau and C. Ryan

Table 1. Experimental setup, used on all experiments

Problem length (�): 128
Population size (N): 100

Number of generations: 100
Position field size (pfs): 7 bits

Value field size (vfs): 1 bit
Crossover probability: 1.0

Position field mutation probability: 0.0
Value field mutation probability: 0.0

their position, whereas on the other problems, the association between position
and value is important and must be kept.

These problems were used as it is easy to demonstrate and visualise the effects
on the population of the genetic operators used. By understanding how these
operators affect population dynamics and performance in these simple binary
problem domains, important information is gathered which can be used on the
design and refinement of these operators.

The GAuGE system using the two crossover operators was compared to a
simple GA. The experimental setup used on all experiments is shown in Table 1.
In these experiments, the mutation operator was turned off, to test how effec-
tively the crossover operators combine the information that is currently on the
population.

3.1 Onemax

The onemax problem is a well-known problem in the GA community. It is defined
by the following formula:

f(x) =
�−1∑

i=0

xi xi ∈ {0, 1}

where � is the phenotype length, and xi the allele at position i within that string
(with positions ranging from 0 to � − 1). The best individual is a binary string
composed of all 1s.

This problem has been used before to demonstrate that the GAuGE map-
ping process does not impair its performance on simple binary maximisation
problems.

3.2 Zeromax

This problem is the opposite of the onemax problem. It is defined by the formula:

f(x) =
�−1∑

i=0

1 − xi xi ∈ {0, 1}

Crossover, Population Dynamics, and Convergence in the GAuGE System 1421

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t I

nd
iv

id
ua

l

Generations

Onemax - Length 128 - Pop 0100 - GAuGE (ss) - no pos or val mut.

GA
GAuGE

GAuGE-pure

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t I

nd
iv

id
ua

l

Generations

Zeromax - Length 128 - Pop 0100 - GAuGE (ss) - no pos or val mut.

GA
GAuGE

GAuGE-pure

Fig. 3. Results obtained for the onemax (left) and zeromax (right) problems with
length 128. The x-axis shows the generation number, and the y-axis the mean best
individual (from 100 independent runs). The vertical error bars plot the standard
deviation for all runs, for each system.

where � is the phenotype length, and xi the allele at position i within that
string (with positions ranging from 0 to � − 1). In this case, the best individual
is a binary string composed of all 0s; as with the onemax problem, the fitness
contribution of each variable is the same.

This experiment was chosen, along with the onemax problem, to test the
performance of the systems being compared under easy maximisation problems,
where the location of an allele in the genotype string is unimportant. The results
obtain for the onemax and zeromax problems are shown in Figure 3.

3.3 Zero-Onemax

This is yet another binary matching problem. It is defined by the formula:

f(x) =
�−1∑

i=0

|(i + 1) mod 2 − xi| xi ∈ {0, 1}

where � is the phenotype length, and xi the allele at position i within that string
(with positions ranging from 0 to � − 1). For this problem, the best individual
is a binary string composed of 0s and 1s constantly alternated.

1422 M. Nicolau and C. Ryan

This problem was used as the location of an allele on the phenotype string is
important. An operator which does not respect the association between alleles
and their positions should perform badly on this kind of problem.

3.4 Binary Matching

This is the last problem analysed. It is defined by the formula:

f(x) =
�−1∑

i=0

|yi − xi| xi, yi ∈ {0, 1}

where � is the phenotype length, xi is the allele at position i within that string
(with positions ranging from 0 to � − 1), and yi is the element at position i of
a randomly created binary string. The best individual in this case is a binary
string equal to the randomly created one. The following string was used:

0011101100001101101111010110101100110000100001110001011000110010
1001011101011011000100001100010111000111110001000100110010101011

As with the zero-onemax problem, in this problem the associations between
positions and values are important, as a value 1 will only contribute to the fitness
of an individual if placed on the second half of its phenotype string. The results
obtain for this and the zero-onemax problems are shown in Figure 4.

4 Analysis

The results obtained for the first two problems show both the simple GA and
the original GAuGE system have a similar performance, whereas GAuGE with
the new crossover operator shows a significantly better performance than those
two systems. All three systems have a similar behaviour for these two problems,
which was to be expected.

For the remaining problems, however, there is a significant drop in perfor-
mance for the original GAuGE system, whereas GAuGE with the new crossover
and the simple GA have a similar performance as on the previous problems (Fi-
gure 4). The reason for this difference in performance between the standard and
pure crossover operators is explained by representation convergence: while the
standard crossover requires the population to converge in its representation to
keep the association between positions and values [14], the pure crossover always
respects those associations even when individuals do not share the same repre-
sentation. As a result, from the first generation, the pure crossover exchanges
valuable information between individuals, while the population slowly conver-
ges in its representation [8] (due to selection pressure); the standard crossover
is however actively working in the population to achieve a convergence in the
representation of individuals, and only then is it capable of exchanging sensible
information, as at that stage a crossover operation between two individuals will
not break position-value associations.

Crossover, Population Dynamics, and Convergence in the GAuGE System 1423

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t I

nd
iv

id
ua

l

Generations

Zero-Onemax - Length 128 - Pop 0100 - GAuGE (ss) - no pos or val mut.

GA
GAuGE

GAuGE-pure

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t I

nd
iv

id
ua

l

Generations

Binary Match - Length 128 - Pop 0100 - GAuGE (ss) - no pos or val mut.

GA
GAuGE

GAuGE-pure

Fig. 4. Results obtained for the zero-onemax and binary-matching problems with
length 128. The x-axis shows the generation number, and the y-axis the mean best
individual (from 100 independent runs). The vertical error bars plot the standard de-
viation for all runs, for each system.

This behaviour can be seen by observing Figures 5 and 6, for the onemax
and zero-onemax experiments (respectively). These figures plot a typical run of
the GAuGE system, with both crossovers. Each square represents the state of
the population at the specified generation; each horizontal line inside the square
represents an individual (run settings are the same as on the previous experi-
ments). The information plotted for each individual is its representation, that
is, the Ri string: position 0 is represented by a black dot, position 127 is repre-
sented by a white dot, and all interim positions are represented with grey levels
in between. Individuals sharing the same representation cause the vertical lines
observed. It can be seen in both figures that representation converges faster with
the standard crossover, as this is required for sensible information to be exchan-
ged between individuals; on the contrary, the representation is slower to converge
with the pure crossover3, and even at generation 50, when all individuals share
the same fitness, different representations co-exist in the population.

3 It does converge, although at a slower rate, as a result of selection pressure.

1424 M. Nicolau and C. Ryan

(a)

(b)

Fig. 5. Population representation convergence for the GAuGE system, with standard
crossover (a) and with pure crossover (b), for the onemax problem. Each square repre-
sents the state of the population at generation 0, 10, and so on; a black dot represents
position 0, and a white dot represents position 127, with grey levels for all interim
positions. Each horizontal line in a square represents an individual.

(a)

(b)

Fig. 6. Population representation convergence for the GAuGE system, with standard
crossover (a) and with pure crossover (b), for the zero-onemax problem. Each square
represents the state of the population at generation 0, 10, and so on; a black dot
represents position 0, and a white dot represents position 127, with grey levels for all
interim positions. Each horizontal line in a square represents an individual.

5 Conclusions and Future Work

The performance of the pure crossover for the GAuGE system has been analysed
in this paper. By adapting to the representation of GAuGE genotype strings, this
crossover does not depend on representation convergence to exchange context-
sensitive data, and as such is fast an effective in combining information present
in the population.

Future work will continue the analysis and possible enhancement to the pre-
sented operator, and the design of a reordering genetic operator [3], to maintain
diversity at representation level, but without breaking the association between
values and their positions. This operator should also allow for the discovery and
maintenance of linkages between genotypic locations.

Crossover, Population Dynamics, and Convergence in the GAuGE System 1425

Acknowledgments. The authors would like to thank an anonymous reviewer
of a previous paper, whose comments and suggestions lead to the investigation
presented in this work.

References

1. Bagley, J. D.: The behaviour of adaptive systems which employ genetic and corre-
lation algorithms. Doctoral Dissertation, University of Michigan (1967)

2. Bean, J.: Genetic Algorithms and Random Keys for Sequencing and Optimization.
ORSA Journal on Computing, Vol. 6, No. 2. (1994) 154-160

3. Chen, Y. and Goldberg, D. E.: An Analysis of a Reordering Operator with Tour-
nament Selection on a GA-Hard Problem. In: Cantu-Paz et al., (eds.): Genetic and
Evolutionary Computation - GECCO 2003. Springer. (July 2003) 825-836

4. Goldberg, D. E., Korb, B., and Deb, K.: Messy genetic algorithms: Motivation,
analysis, and first results. Complex Systems, Vol. 3. (1989) 493-530

5. Harik, G.: Learning Gene Linkage to Efficiently Solve Problems of Bounded Diffi-
culty Using Genetic Algorithms. Doctoral Dissertation, University of Illinois (1997)

6. Holland, J. H.: Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press. (1975)

7. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University
Press. (1983)

8. Nicolau, M. and Ryan, C.: How Functional Dependency Adapts to Salience Hier-
archy in the GAuGE System. In: Ryan et al, (eds.): Proceedings of EuroGP-2003.
Lecture Notes in Computer Science, Vol. 2610. Springer-Verlag. (2003) 153-163

9. Nicolau, M., Auger, A., and Ryan, C.: Functional Dependency and Degeneracy:
Detailed Analysis of the GAuGE System. In: Liardet et al, (eds.): Proceedings of
Évolution Artificielle 2003. Lecture Notes in Computer Science (to be published).
Springer-Verlag. (2003)

10. Nicolau, M. and Ryan, C.: Efficient Crossover in the GAuGE system. In: Keijzer
et al, (eds.): Proceedings of EuroGP-2004. Lecture Notes in Computer Science (to
be published). Springer-Verlag. (2004)

11. Oliver, I. M., Smith, D. J., and Holland, J. R. C.: A Study of Permutation Crosso-
ver Operators on the Traveling Salesman Problem. In: Proceedings of the Second
International Conference on Genetic Algorithms. (1987) 224-230

12. O’Neill, M. and Ryan, C.: Grammatical Evolution - Evolving programs in an ar-
bitrary language. Kluwer Academic Publishers. (2003)

13. Ryan, C., Nicolau, M., and O’Neill, M.: Genetic Algorithms using Grammatical
Evolution. In: Foster et al, (eds.): Proceedings of EuroGP-2002. Lecture Notes in
Computer Science, Vol. 2278. Springer-Verlag. (2002) 278-287

14. Ryan, C. and Nicolau, M.: Doing Genetic Algorithms the Genetic Programming
Way. In: Riolo, R., and Worzel, B. (eds.): Genetic Programming Theory and Prac-
tice. Kluwer Publishers, Boston, MA. (2003) 189-204

	Introduction
	GAuGE
	Previous Work
	GAuGE Mapping
	Crossover Operators

	Experiments and Results
	Onemax
	Zeromax
	Zero-Onemax
	Binary Matching

	Analysis
	Conclusions and Future Work

